Local and Remote Cloud Radiative Effect Impacts onto the Extratropical Atmospheric Circulation

Oliver Watt-Meyer
Dargan Frierson
University of Washington

CFMIP 2017
Tokyo, Japan
Response of 850hPa zonal-mean zonal wind to a +4K sea surface temperature anomaly

A poleward shift in all models, but magnitude varies by a factor of 2

Voigt and Shaw [2016]
Models suggest that half or more of the jet response to global warming comes from changes in clouds.

Response to quadrupling CO$_2$ with clouds locked to control climate

Ceppi and Hartmann [2016]
Models suggest that half or more of the jet response to global warming comes from changes in clouds.

\[u \ (m \ s^{-1}) \]

Response to quadrupling CO\(_2\) with clouds locked to control climate.

Response to clouds being locked to 4x CO\(_2\) simulation but with CO\(_2\) itself held constant.

Ceppi and Hartmann [2016]
Models suggest that half or more of the jet response to global warming comes from changes in clouds.

Similar experiment, but with a specified-SST model, instead of a slab-ocean model.

Voigt and Shaw [2015]
However, the impacts of cloud radiative effects onto the midlatitude jet vary widely across models, even for the present-day climate.

Contours: time-mean zonal mean zonal wind in “clouds-off” simulation

Shading: difference between “clouds-on” and “clouds-off” simulations
Methods

• Use the Clouds On-Off Klimatic Intercomparison Experiment (COOKIE) ensemble [Stevens et al., 2012]
 – A set of specified-SST aquaplanet simulations, in which the radiative transfer scheme is made to ignore the presence of clouds
 – These simulations are compared to control simulations that include cloud radiative effects in order to isolate the impacts of clouds onto the circulation of the atmosphere

• In addition, we perform experiments with the GFDL-AM2.1 and NCAR-CAM5.3 models in which cloud radiative effects are only imposed in certain regions
 – Tropics: equatorward of 30°, extratropics: poleward of 30°
Response of zonal mean zonal wind to cloud radiative effects in tropics vs. extratropics in GFDL-AM2.1
Response of zonal mean zonal wind to cloud radiative effects in tropics vs. extratropics in GFDL-AM2.1 and NCAR-CAM5.3 models
Response of mass streamfunction to cloud radiative effects in tropics vs. extratropics in GFDL-AM2.1 and NCAR-CESM1.2 models.
Why do tropical clouds drive changes in strength of Hadley cell?

\[ACRE = \frac{c_p}{g} \int_0^{p_s} Q_{cld} \, dp \]

ACRE: Atmospheric Cloud Radiative Effect

Vertical dashed line: latitude of eddy-driven jet for clouds-off simulation
Interactions between subtropical and midlatitude jet

• A strengthened Hadley cell, and thus accelerated subtropical jet, leads to an equatorward shifted eddy-driven jet

• Two theories have been proposed:
 – increased baroclinicity on the poleward flank of the subtropical jet when it is strong [Lee and Kim, 2003]
 – changes in meridional eddy propagation when the subtropical jet strengthens [Ceppi et al., 2013]
What about the extratropical clouds?

- Locally, meridional gradients in ACRE will impact the latitude of maximum baroclinicity of the atmosphere

\[
ACRE_{\phi\phi} = \overline{ACRE}(\phi_{\text{off}} - \alpha) - 2 \cdot \overline{ACRE}(\phi_{\text{off}}) + \overline{ACRE}(\phi_{\text{off}} + \alpha)
\]

\[
\overline{ACRE}(\phi') = \text{mean} \left[ACRE(\phi) \right]_{|\phi - \phi'| < \frac{\alpha}{2}}
\]

![Diagram of ACRE vs. Latitude](image)
Measure these effects across COOKIE models

• Eddy driven jet position ϕ: latitude of maximum zonal mean zonal wind at 850hPa
 \[\Delta \phi = \phi_{on} - \phi_{off} \]

• Hadley cell strength ψ: maximum of mass streamfunction
 \[\Delta \psi = \psi_{on} - \psi_{off} \]

• ACRE gradient: $\text{ACRE}_{\phi\phi}$, approximate measure of second derivative of ACRE about ϕ_{off}
ΔΦ, Δψ and ACRE_ϕφ across COOKIE models

a) Δψ versus ΔΦ

r = -0.65

ΔΦ [degrees poleward]

Δψ [10^9 kg/s]

-6 -5 -4 -3 -2 -1 0 1 2 3 4

-25 0 25 50 75

CNRM-CM5
NCAR-CAM5.3
MPI-ECHAM6
GFDL-AM2.1
HadGEM2-A
IPSL-CM5B-LR
IPSL-CM5A-LR
MRI-CGCM3

GFDL-AM2.1, extratrop on
GFDL-AM2.1, tropical on
GFDL-AM2.1, deep trop on
GFDL-AM2.1, subtrop on
NCAR-CAM5.3, extratrop on
NCAR-CAM5.3, tropical on
\(\Delta \phi, \Delta \psi\) and ACRE\(\phi\phi\) across COOKIE models

a) \(\Delta \psi\) versus \(\Delta \phi\)

\[r = -0.65 \]

b) ACRE\(\phi\phi\) versus \(\Delta \phi\)

\[r = -0.41 \]
∆φ, ∆ψ and ACRE_{φφ} across COOKIE models

a) ∆ψ versus ∆φ

b) ACRE_{φφ} versus ∆φ

c) ∆ψ versus ACRE_{φφ}

Blue: equatorward shift
Red: poleward shift
Black lines show least-squares best fit to:

\[\Delta \phi = A \cdot \Delta \psi + B \cdot ACRE_{\phi\phi} + C \]
$\Delta \phi, \Delta \psi$ and $\text{ACRE}_{\phi\phi}$ across COOKIE models

a) ACRE influence regressed out

$r = -0.71$

b) Hadley influence regressed out

$r = -0.53$

c) true versus best fit $\Delta \phi$

$r = 0.76$

- CNRM-CM5
- NCAR-CAM5.3
- IPSL-CM5B-LR
- MPI-ECHAM6
- GFDL-AM2.1
- HadGEM2-A
- IPSL-CM5A-LR
- GFDL-AM2.1, extratrop on
- GFDL-AM2.1, tropical on
- GFDL-AM2.1, deep trop on
- GFDL-AM2.1, subtrop on
- GFDL-AM2.1, LW on
- GFDL-AM2.1, SW on
- NCAR-CAM5.3, extratrop on
- NCAR-CAM5.3, tropical on
What about the global warming response of the jet?

Response of 850hPa zonal wind to +4K SST perturbation
What about the global warming response of the jet?

Response of 850hPa zonal wind to +4K SST perturbation

Clouds off

Clouds on
Summary

• Across models, the impact of cloud radiative effects onto the position of the midlatitude jet varies widely in sign and magnitude
• This is primarily controlled by how much cloud radiative effects strengthen the Hadley cell, and thus accelerate the subtropical jet
• An important secondary control is the local impact of cloud radiative effects onto meridional temperature gradients in the midlatitudes
• Work to be done:
 – Implications for global warming response of jets?
 – What would the impact of including an interactive ocean be? (greater role for low clouds)
• Paper out in *GRL*: “Local and Remote Impacts of Atmospheric Cloud Radiative Effects Onto the Eddy-Driven Jet”

This research was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science.
Extra slides
Black: ACRE in clouds-on simulation. Red: ACRE in clouds-off simulation (where available)
Black: ACRE in clouds-on simulation. Red: ACRE in clouds-off simulation (where available)
$\Delta \phi, \Delta \psi$ and ACRE$_{\phi\phi}$ across COOKIE models

(a) ACRE influence regressed out

(b) Hadley influence regressed out

(c) true versus best fit $\Delta \phi$
$\Delta \phi$, $\Delta \psi$ and ACRE$\phi\phi$ across COOKIE models

a) ACRE influence regressed out

$\Delta \phi [\text{degrees poleward}]$

$\Delta \psi [10^9 \text{ kg/s}]$

r = -0.71

b) Hadley influence regressed out

$\Delta \phi [\text{degrees poleward}]$

r = -0.53

c) true versus best fit $\Delta \phi$

r = 0.76

g) IPSL-CM5A-LR

g) IPSL-CM5A-LR